Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhao-Peng Deng, Shan Gao,* Li-Hua Huo and Jing-Gui Zhao

Laboratory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.042$
$w R$ factor $=0.120$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Diaquabis(4,4'-bipyridine-кN)bis(4-carboxy-phenoxyacetato-кO)cobalt(II) tetrahydrate

The crystal structure of the title complex, $\left[\mathrm{Co}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{5}\right)_{2}{ }^{-}\right.$ $\left.\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ or $\left[\mathrm{Co}(4-\mathrm{CPOAH})_{2}\left(4,4^{\prime}-\text { bipy }\right)_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}\left(4,4^{\prime}\right.$-bipy is $4,4^{\prime}$-bipyridine and 4 -CPOAH ${ }^{-}$is the 4-carboxyphenoxyacetate monoanion), consists of two independent mononuclear molecules that interact through the uncoordinated water molecules. The $\mathrm{Co}^{\mathrm{II}}$ atoms lie on inversion centers and display an octahedral geometry defined by two oxyacetate O atoms of $4-\mathrm{CPOAH}^{-}$groups, two N atoms of $4,4^{\prime}$-bipy ligands and two water molecules. A threedimensional supramolecular network structure is formed through hydrogen-bonding interactions.

Comment

4-Carboxyphenoxyacetic acid (4- CPOAH_{2}) is a dicarboxylic acid with both rigid and flexible parts, and is an excellent candidate for the construction of supramolecular architectures. Recently, we have reported three one-dimensional $\mathrm{Co}^{\text {II }}$ polymers based on the $4-\mathrm{CPOA}^{2-}$ ligand, namely $\{[\mathrm{Co}(4-$ CPOA)(3-hydroxypyridine) $\left.\left.)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{n}$ (in which the 4-CPOA^{2-} group acts in a bis-monodentate mode; Gao et al., 2004), $\quad\left[\mathrm{Co}(4-\mathrm{CPOA})(1,10 \text {-phenanthroline })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n} \quad$ and $\left[\mathrm{Co}(4-\mathrm{CPOA})\left(2,2^{\prime} \text {-bipyridine }\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{\mathrm{n}}$ (in which the 4-CPOA^{2-} groups act in a tridentate mode; Gao, Huo, Gu, Liu et al., 2005; Gao, Huo, Gu, Zhao et al., 2005). In order to gain further insight into the $\mathrm{Co}^{\mathrm{II}}$ binding modes of the $4-\mathrm{CPOAH}_{2}$ ligand, we have now isolated the title mononuclear $\mathrm{Co}^{\mathrm{II}}$ complex, $\quad\left[\mathrm{Co}(4-\mathrm{CPOAH})_{2}\left(4,4^{\prime} \text {-bipy }\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}, \quad$ (I), obtained by the reaction of 4-carboxyphenoxyacetic acid, 4, 4^{\prime} bipyridine and cobalt diacetate trihydrate in an aqueous solution.

As illustrated in Fig. 1, the crystal structure consists of two independent neutral mononuclear $\mathrm{Co}^{\mathrm{II}}$ molecules and eight

Received 31 October 2005 Accepted 3 November 2005 Online 10 November 2005

Figure 1
ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x$, $1-y, 1-z$.]
uncoordinated water molecules. The $\mathrm{Co}^{\mathrm{II}}$ atoms are located on inversion centers and the $4-\mathrm{CPOAH}^{-}$ligands is monodeprotonated. The $\mathrm{Co}^{\text {II }}$ atoms of the two molecules both display octahedral coordination, defined by two O atoms of 4-CPOAH^{-}groups, two N atoms of $4,4^{\prime}$-bipy ligands and two water molecules. Similar bond distances and angles are observed in the molecules, except that the $\mathrm{Co} 1-\mathrm{O} 1 w$ bond is somewhat shorter than the $\mathrm{Co} 2-\mathrm{O} 2 w$ bond (Table 1). The $\mathrm{Co}-\mathrm{N}$ and $\mathrm{Co}-\mathrm{O}$ bond distances are within the normal range in the reported $\mathrm{Co}^{\text {II }}$ complexes containing the 4 CPOA ${ }^{2-}$ ligand (Gao et al., 2004; Gao, Huo, Gu, Liu et al., 2005; Gao, Huo, Gu, Zhao et al., 2005). The oxyacetate group is twisted out of the benzene plane and the $\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 2-\mathrm{C} 1$ and $\mathrm{C} 22-\mathrm{O} 8-\mathrm{C} 21-\mathrm{C} 20$ torsion angles are 88.3 (3) and $-75.4(3)^{\circ}$, respectively. A three-dimensional supramolecular network structure is formed through the extended hydrogenbonding interactions between water molecules, carboxylic acid OH groups and carboxylate O atoms (Table 2).

Experimental

The title complex was prepared by the addition of cobalt diacetate trihydrate ($2.31 \mathrm{~g}, 10 \mathrm{mmol}$) and 4, 4^{\prime}-bipyridine $(1.56 \mathrm{~g}, 10 \mathrm{mmol})$ to a hot aqueous solution of 4-carboxyphenoxyacetic acid $(1.96 \mathrm{~g}$, 10 mmol); the pH was adjusted to 6 with $0.1 M$ sodium hydroxide. The solution was allowed to evaporate at room temperature. Pink prismatic crystals separated from the filtered solution after several days. Analysis calculated for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{CoN}_{4} \mathrm{O}_{16}$: C $52.48, \mathrm{H} 4.87, \mathrm{~N} 6.44 \%$; found: C 52.45, H 4.84, N 6.46\%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{5}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)^{2}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=869.69$
Triclinic, $P \overline{1}$
$a=10.807(2) \AA$
$b=12.614$ (3) \AA
$c=16.055$ (3) A
$\alpha=103.89$ (3) ${ }^{\circ}$
$\beta=108.77$ (3) ${ }^{\circ}$
$\gamma=103.69$ (3) ${ }^{\circ}$
$V=1890.7(10) \AA^{3}$
$Z=2$
$D_{x}=1.528 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 13808 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=0.54 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, pink
$0.36 \times 0.26 \times 0.21 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.830, T_{\text {max }}=0.895$
18606 measured reflections
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.121$
$S=1.02$
8539 reflections
571 parameters
H atoms treated by a mixture of independent and constrained refinement

8539 independent reflections 5898 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-13 \rightarrow 14$
$k=-14 \rightarrow 16$
$l=-20 \rightarrow 20$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0687 P)^{2}\right. \\
& +0.0415 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.58 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Co} 1-\mathrm{O} 1 w$	$2.0869(18)$	$\mathrm{Co} 2-\mathrm{O} 7$	$2.0383(15)$
$\mathrm{Co} 1-\mathrm{O} 1$	$2.0934(17)$	$\mathrm{Co} 2-\mathrm{N} 3$	$2.1698(17)$
$\mathrm{Co} 1-\mathrm{N} 1$	$2.1739(18)$	$\mathrm{Co} 2-\mathrm{O} 2 w$	$2.1718(17)$
$\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{O} 1 w^{\mathrm{i}}$	180.0	$\mathrm{O} 2 w^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{O} 2 w$	180.0
$\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{O} 1$	$91.61(7)$	$\mathrm{O} 7-\mathrm{Co} 2-\mathrm{O} 2 w$	$96.64(6)$
$\mathrm{O} 1 w-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	$88.39(7)$	$\mathrm{O} 7-\mathrm{Co} 2-\mathrm{O} 2 w^{\mathrm{ii}}$	$83.36(6)$
$\mathrm{O} 1 w-\mathrm{C} 1-\mathrm{N} 1$	$91.27(8)$	$\mathrm{O} 7^{\mathrm{ii}}-\mathrm{Co} 2-\mathrm{O} 7$	180.0
$\mathrm{O} 1 w-\mathrm{C} 1-\mathrm{N} 1^{\mathrm{i}}$	$88.73(8)$	$\mathrm{O} 7-\mathrm{Co} 2-\mathrm{N} 3$	$89.48(7)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 1^{\mathrm{i}}$	180.0	$\mathrm{O} 7-\mathrm{Co} 2-\mathrm{N} 3^{\mathrm{ii}}$	$90.52(7)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	$89.34(7)$	$\mathrm{N} 3-\mathrm{Co} 2-\mathrm{O} 2 w$	$91.14(7)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	$90.66(7)$	$\mathrm{N} 3-\mathrm{Co} 2-\mathrm{O} 2 w^{\mathrm{ii}}$	$88.86(7)$
$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 1$	180.0	$\mathrm{~N} 3-\mathrm{Co} 2-\mathrm{N} 3^{i}$	180.0

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 2$	$0.84(2)$	$2.06(2)$	$2.765(3)$	$141(2)$
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 5 w^{\text {iii }}$	$0.85(1)$	$2.01(1)$	$2.835(3)$	$165(2)$
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{~N}^{\text {iv }}$	$0.85(1)$	$2.05(1)$	$2.884(2)$	$167(2)$
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{~N} 2^{\text {v }}$	$0.85(2)$	$1.98(1)$	$2.801(3)$	$161(2)$
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 2 w^{\text {iii }}$	0.85	2.05	$2.867(2)$	160
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 2$	0.85	2.09	$2.843(2)$	147
$\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O} 3 w^{\text {vi }}$	$0.87(1)$	$1.96(1)$	$2.828(3)$	$176(3)$
$\mathrm{O} 4 w-\mathrm{H} 4 w 2 \cdots \mathrm{O} 3 w^{\text {vii }}$	$0.88(3)$	$1.94(3)$	$2.808(3)$	$173(3)$
$\mathrm{O} 5 w-\mathrm{H} 5 w 1 \cdots \mathrm{O} 4^{\text {vii }}$	$0.86(3)$	$2.14(2)$	$2.869(3)$	$143(3)$
$\mathrm{O} 5 w-\mathrm{H} 5 w 2 \cdots \mathrm{O} 6$	$0.86(3)$	$1.79(3)$	$2.638(3)$	$168(4)$
$\mathrm{O} 6 w-\mathrm{H} 6 w 1 \cdots \mathrm{O} 5 w^{\text {viii }}$	$0.85(1)$	$1.97(2)$	$2.734(3)$	$150(3)$
$\mathrm{O} 6 w-\mathrm{H} 6 w 2 \cdots \mathrm{O} 1^{\text {ix }}$	$0.84(3)$	$2.17(3)$	$2.995(3)$	$165(3)$
$\mathrm{O} 5-\mathrm{H} 12 \cdots \mathrm{O} 6 w$	$0.86(1)$	$1.77(1)$	$2.614(3)$	$170(4)$
$\mathrm{O} 10-\mathrm{H} 9 \cdots \mathrm{O} 4 w$	$0.85(1)$	$1.71(1)$	$2.561(2)$	$174(3)$

Symmetry codes: (iii) $x-1, y, z-1$; (iv) $x, y-1, z$; (v) $x+1, y+1, z+1$; (vi) $-x,-y,-z$; (vii) $x, y-1, z+1$; (viii) $-x+1,-y+2,-z+1$; (ix) $x, y+1, z$.

metal-organic papers

C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ 0.93 or $0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were refined in the riding-model approximation. H atoms of the $\mathrm{O} 3 w$ water molecule were added using the HYDROGEN program (Nardelli, 1999), and refined with $\mathrm{O}-\mathrm{H}=0.85 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O} 3 w)$. The other H atoms of the water molecules and hydroxy groups were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ restraints of 0.85 (1) \AA, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable

Teachers of Heilongjiang Province (No. 1054 G036), and Heilongjiang University for supporting this study.

References

Gao, S., Gu, C.-S., Huo, L.-H., Liu, J.-W. \& Zhao, J.-G. (2004). Acta Cryst. E60, m1830-m1832.
Gao, S., Huo, L.-H., Gu, C.-S., Liu, J.-W. \& Zhao, J.-G. (2005). Acta Cryst. E61, m496-m498.
Gao, S., Huo, L.-H., Gu, C.-S. Zhao, H. \& Zhao, J.-G. (2005). Chin. J. Inorg. Chem. 21, 701-704.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77391-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: (C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

